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Abstract. We give a short trigonometric proof of the Steiner-Lehnheotem.

The well known Steiner-Lehmus theorem states that if theriatl angle bisec-
tors of two angles of a triangle are equal, then the trianglisasceles. Unlike
its trivial converse, this challenging statement has etitiha lot of attention since
1840, when Professor Lehmus of Berlin wrote to Sturm askargafpurely ge-
ometrical proof. Proofs by Rougevain, Steiner, and Lehnmosélf appeared in
the following few years. Since then, a great number of pedptduding several
renowned mathematicians, took interest in the problenultieg in as many as 80
different proofs. Extensive histories are given in [14]5]}1[16], and [21], and
biographies and lists of references can be found in [33], [@7d [19]. More ref-
erences will be referred to later when we discuss genetalimand variations of
the theorem.

In this note, we present a new trigonometric proof of the tteo Compared
with the existing proofs, such as the one given in [17, pp—194], it is also short
and simple. It runs as follows.

Figure 1

Let BB’ andC'C’ be the respective internal angle bisectors of anglesxdC
in triangle ABC', and leta, b andc denote the sidelengths in the standard order. As
shown in Figure 1, we set

B=23,C=2y, u=AB,U=B'C, v=AC" V =CB.
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We shall see that the assumptidd®’ = CC’ andC > B (and hence > b) lead
to the contradiction that
u v ou v
Geometrically, this means that the lii#C’ intersects both rayBC andC B.
To achieve (1), we use the law of sines, the angle bisectarehe and the

identity sin 20 = 2sin 6 cos # to obtain

b e _ u+U_v+V:g_Z:g_g<O’ @)
U v U v u v ¢ b
b c  bv sinBwv 2cosfsinf v cosfsinfg v
v v cu sinC u 2cosvysiny u cosy wu sinvy
_ cos 3 sinA CC’"  cosf3 o1 3)

cosy BB'sinA  cosvy
Clearly (2) and (3) lead to the contradiction (1).

No new proofs of the Steiner-Lehmus theorem seem to haveaeggbén the
past several decades, and attention has been focused galgatiens, variations,
and certain foundational issues. Instead of taking anglechdrs, one may take
r-sectors, i.e., cevians that divide the angles internallthe ratior : 1 — r for

€ (0,1). Then the result still holds; see [35], [15, X, p. 311], [38hd more
recently, [5], [2], and [10]. In fact, the result still holdis absolute (or neutral)
geometry; see [15, X, p. 311] and the references therein,nzoré recently [6,
Exercise 7, p. 9; solution, p. 420] and [19, Exercise 15, 9].1Dne may also
consider external angle bisectors. Then one sees that ttaditgepf two external
angle bisectors (and similarly the equality of one interanad one external angle
bisectors) does not imply isoscelessness. This is comslda(16], [22], [23], and
more recently in [11]; see also [30] and the references ither€he situation in
spherical geometry was also considered by Steiner; se¢q16, 310].

Variations on the Steiner-Lehmus theme have become pojuthe past few
decades with much of the contribution due to the late C. RyPhliere, one starts
with a centerP of triangle ABC, not necessarily the incenter, and lets the cevians
AA', BB’, CC' through P intersect the circumcircle oABC at A*, B*, C*,
respectively. The classical Steiner-Lehmus theorem dattisthe case whe® is
the incenter and considers the assumpfiti’ = C'C’. One may start with any
center and consider any of the assumpti®B’ = CC’, BB* = CC*, A’'B' =
A'C', A* B* = A*C*, etc. Such variations and others have appeared in [27], [28]
[29], [34], [3], [12], [32], [31], [1], and [26, Problem 4, 1], and are surveyed in
[13]. Some of these variations have been investigated inenigimensions in [7]
and interesting results were obtained. However, the gkratian of the classical
Steiner-Lehmus theorem to higher dimensions remains dfyerstill do not know
what degree of regularity&simplex must enjoy so that two or even all the internal
angle bisectors of the corner angles are equal. This proisleaised at the end of
[7].

The existing proofs of the Steiner-Lehmus theorem are ditéct (many being
proofs by contradiction arductio ad absurdujror use theorems that do not have
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direct proofs. The question, first posed by Sylvester in,[3@jether there is a
direct proof of the Steiner-Lehmus theorem is still opeml 8glvester’s conjecture
(and semi-proof) that no such proof exists seems to be comyraonepted; see the
refutation made in [20] of the allegedly direct proof given24], and compare to
[8], where we are asked on p. 58 (Problem 16jiie a direct proof of the Steiner-
Lehmus theoremand where such a proof is given on p. 390 using Stewart’s
theorem. An interesting forum discussion can also be dsitd9]. We would like
here to raise the question whether one can provide a direof pf the following
weaker version of the Steiner-Lehmus theordfithe three internal angle bisectors
of the angles of a triangle are equal, then the triangle isiledgral.
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